第937页

如果这篇论文只是用数学的语言,告诉人们杨米尔斯方程的通解是存在的,却不能为求出这个通解铺平道路,那么即便它同样算是一份出色的成果,但也很难达到杰出的水准。

费弗曼:“我认为这种观点是不客观的。体现一个数学猜想价值的不一定非得创造一种全新的数学工具,它也可以是对现有的数学工具进行完善,或者哪怕只是一种抽象的数学思想。”

记者:“你认为他在此基础上强化了l流形的理论?”

费弗曼点头:“没错。一个理论从生涩发展到成熟,往往需要五年甚至是十年的时间,以及无数个数学命题的积累去沉淀。很少有人能在短短两年的时间里做到这一点,但他却做到了。”

“通过引入l流形的方法,他成功在偏微分方程和微分几何之间搭建了一条桥梁,并且将拓扑学的思想和方法引入了进去。如果要我用非专业的语言进行描述的话,他的做法便是让方程变得不再是纯粹的方程,而是一种存在于特殊空间内的几何。”

记者:“这太抽象了,能说的更具体点吗?”

费弗曼耸了耸肩:“就好像是在一个不规则的图形上做了一条辅助线,经过一种特殊的变化,让原本复杂的东西能变得一目了然。”

记者:“可是我注意到,arxiv上跟进这方面研究的人很少。虽然这个数据可能不够客观,但如果它真的这么管用,为什么没有人去考虑用它。”

费弗曼:“这个问题很简单,你不能指望一个诞生不到两年的理论,立刻成为学术界的主流,就算是格罗滕迪克也做不到。不说深入研究它,就算是学会用它,也是需要一定的时间……更何况,这种方法存在一定的门槛。”

记者:“所以,你对他的工作评价很高?”

费弗曼:“是的,而且我相信任何真正看懂了那篇论文的人,都会产生和我一样的想法。”

记者:“最后一个问题,可能与杨米尔斯方程本身无关……当然,您也可以不发表看法。”

费弗曼笑了笑说:“你问吧。”

记者:“你认为他有可能成为本世纪最伟大的数学家吗?”

这是个很难的问题。

毕竟二十一世纪也才刚刚开了个头而已。